
Design and Deployment of a

National-Scale Authentication Infrastructure

Randy Butler∗, Doug Engert†, Ian Foster‡§, Carl Kesselman¶,
Steven Tuecke‡, John Volmer†, Von Welch∗

Abstract

Increasingly, independent institutions with similar
goals and interests are forming loosely coupled vir-
tual organizations for collaboration and resource shar-
ing. The construction of virtual organizations is ham-
pered, however, by two conflicting goals: all members
of the organization should have access to a resource
as if it was their own, but participating institutions
must not be required to change local security mech-
anisms or surrender control over their access control
policies. We describe our experience designing, de-
veloping, and deploying the Grid Security Infrastruc-
ture (GSI), an authentication and authorization in-
frastructure that meets these requirements. GSI ca-
pabilities include single sign-on, no plaintext pass-
words, proxy credentials, mapping to local security
mechanisms (including Kerberos), site control over
access control policies, and user-controlled delegation.
We have deployed GSI in the NSF-funded Partner-
ships in Advanced Computational Infrastructure, a
national-scale virtual organization that comprises ma-
jor research universities and laboratories. GSI-based
versions of popular utilities including ssh and ftp are
being used to provide access to dozens of supercom-
puters and storage systems nationwide.

1 Introduction

It is increasingly common in science and industry
that individuals and institutions form virtual orga-
nizations that pool resources to tackle a common
goal. One such example is the two Partnerships
for Advanced Computational Infrastructure (PACIs),

∗National Center for Supercomputing Applications, Ur-
bana, IL

†Electronic and Computing Technologies Division, Argonne
National Laboratory, Argonne, IL 60439

‡Mathematics and Computer Science Division, Argonne Na-
tional Laboratory, Argonne, IL 60439

§Department of Computer Science, The University of
Chicago, Chicago, IL 60637

¶USC Information Sciences Institute, Marina del Rey, CA
90292

formed to create next-generation infrastructures for
computational science. The PACIs are relatively large
and long-lived virtual organizations: they are funded
by the National Science Foundation (NSF) for 5–10
years and together link some 50 institutions and thou-
sands of researchers. Other virtual organizations—
for example, the fleeting one formed to write this
article—are more limited in timescale and size.

Participants in virtual organizations commonly
need to share resources such as data archives, com-
puter cycles, and networks. In all but the most triv-
ial cases, resources are not offered unconditionally;
rather, restrictions are placed on their use, based on
the identity of the user and the nature of the resource
use requested. Thus, underlying any sharing mecha-
nism is the ability to authenticate the identity of the
requestor of a resource, and to determine if the re-
questor is authorized to make the resource request.

Because virtual organizations tend to be fluid, the
mechanisms used to establish identity and autho-
rization must be flexible and lightweight, so that
resource-sharing arrangements can be established and
changed quickly. However, because virtual organiza-
tions complement rather than replace existing insti-
tutions, sharing mechanisms cannot require changes
to local policies and must allow individual institutions
to maintain ultimate control over their own resources.

In this article, we describe our experiences creating
and deploying an authentication and authorization in-
frastructure that meets these requirements. This in-
frastructure is based on the Grid Security Infrastruc-
ture (GSI) [3] developed within the Globus research
project [1] and provides a secure, single sign-on ca-
pability, while preserving site control over access con-
trol policies and local security infrastructure. The
infrastructure provides GSI-enabled versions of com-
mon applications, such as ftp and remote login, as
well as a programming interface for constructing se-
cure applications. The infrastructure is being used
on a daily basis to access dozens of supercomputers
and storage systems nationwide; it is one of a very
small number of security solutions with this level of
acceptance.

1



The rest of this article combines elements of a tu-
torial and case study, first describing the PACI envi-
ronment and its security requirements, then reviewing
the Grid Security Infrastructure, and finally present-
ing our experiences deploying GSI in this large virtual
organization.

2 Multisite Authentication

Providing a means for reliably determining the iden-
tity of a requestor is critical to the construction of
virtual organizations. However, authentication across
multiple sites is complicated by the independent na-
ture of the participants. We illustrate this point by
describing some of the issues that arise in a specific
virtual organization: the NSF PACIs. We then dis-
cuss the technical requirements for a multisite authen-
tication infrastructure, and we review technology al-
ternatives.

2.1 The PACI Community

The NSF PACIs are two distinct consortia that are
collectively dedicated to the development of next-
generation scientific problem-solving tools. Together,
they total some 50 or more universities and govern-
ment laboratories. As such, they are both large vir-
tual organizations in their own right and providers of
resources to an even larger (and less formal) national
user community of many thousands of researchers,
educators, and students located within universities,
laboratories, and industry. While we focus our dis-
cussion on the PACIs, the issues raised are applicable
to virtual organizations in general.

Various subsets of this PACI community interact
in different ways, for example to develop a next-
generation software system, to operate a remote elec-
tron microscope, or to access supercomputers. Most
of these interactions involve some form of authentica-
tion and authorization.

PACI institutions all have long histories in running
computing facilities. Each has well-established poli-
cies and procedures governing various aspects of fa-
cility operation, including computer security and, in
particular, authentication and authorization. While
several member sites run various flavors of Ker-
beros and DCE, many others run standard Unix
authentication (DES-encrypted passwords, living in
/etc/passwd or NIS). A few participating sites use
one-time password mechanisms.

In the early days of the PACIs, there was some
movement to convince a core set of sites to run Ker-
beros, with the vague hope of eventually establishing
Kerberos cross-realm authentication between sites.

However, this approach quickly proved infeasible for
various technical, financial, and political reasons. It
is now clear that member institutions will continue to
use both Kerberos-based and non-Kerberos solutions
within their sites for the foreseeable future. Resource
sharing mechanisms used within the PACI commu-
nity must be able to coexist with these different local
mechanisms.

2.2 Technical Requirements

In the absence of any integrated authentication and
authorization solution, virtual organizations have
used a variety of ad hoc solutions to achieve resource
sharing. Individual users typically have numerous ac-
counts at the various institutions, with distinct login
names and passwords at each institution. Information
that needs to be shared might be placed on Web sites
with access controlled via other passwords. This mul-
tiplicity of mechanisms and passwords represents a se-
vere administrative headache for users and in practice
discourages information sharing and collaboration. It
also hinders the ability to build software that securely
spans resources at multiple institutions or that allows
secure collaboration between users at multiple insti-
tutions.

In designing an authentication and authorization
solution that addresses the needs of virtual organi-
zations, we must consider the requirements of both
resource users and the sites providing resources.

User Requirements. From the user perspective,
the primary requirement is simplicity: access to re-
sources in the virtual organization should not look
significantly different from access to resources in the
user’s own organization. Users should be able to “log
on” (authenticate) just once and then have access to
any resource in the virtual organization that they are
authorized to use, without further intervention (of-
ten called single sign-on). Programs running on a
user’s behalf should be able to access the permitted
resources as well, endowing these programs with a
subset of the user’s rights (i.e., delegation).

Consequently, any proposed solution must inter-
face transparently to the tools that are commonly
used to effect remote resource access: remote login
(telnet/rlogin), file access (FTP), Web browsers, and
programming libraries, such as CORBA or MPI. It
must also be possible to develop new intersite appli-
cations, by providing standardized APIs for accessing
security functions. For example, a group developing
collaborative design tools should be able to integrate
authentication and authorization mechanisms easily.

2



Site Requirements. The concerns of resource-
providing sites tend to constrain the design of an au-
thentication and authorization infrastructure in two
ways. First, sites are typically not prepared to re-
place or modify whatever intradomain security solu-
tions are already in place. Hence, a distinct interdo-
main security solution is required; this solution must
interoperate with the local security solutions, must be
at least as strong as those local solutions (so that its
use does not weaken site security), and must be easily
understandable by site administrators (so that they
can trust it). Second, site administrators must be
able to exert tight control over the policies that gov-
ern access to their resources, preserving control over
both how users establishes their identity and which
users are allowed to access which resources.

2.3 Technical Alternatives

We review briefly two widely used authentication ap-
proaches, Kerberos and secure shell, and explain why
they do not meet our requirements.

Kerberos. Kerberos [7] is an authentication system
used either in its own right or in the context of DCE.
Kerberos allows users to authenticate via a secure
transaction with a centrally maintained key server.
Interorganizational authentication (called cross-realm
authentication) can be achieved by designating key
servers in other organizations whose authentication
decisions one is willing to trust.

While Kerberos meets many of the basic require-
ments for virtual organization authentication, it
presents two problems. First, using Kerberos for in-
tersite authentication would require that it also be
used for intrasite authentication—which is simply not
feasible. Second is the practical difficulty encountered
in negotiating cross-realm authentication agreements:
sites often feel that they surrender too much control
over local policy when they agree to accept tickets is-
sued by other sites. In addition, the number of such
agreements that must be negotiated is large.

Secure Shell. Secure shell (SSH) is a widely used
remote login technology that meets a number of our
requirements: It is based on public key authentica-
tion technology, uses link encryption to protect user
credentials, and is easily deployed. Users like SSH
because it provides basic remote login and file copy
capabilities without a lot of complexity.

SSH also has two significant drawbacks as an au-
thentication solution for virtual organizations. First,
it requires that users manage their own cross-site au-
thentication relationships, by copying public keys (or

keeping track of passwords) to each site for which
remote access is required. This task can become
burdensome if users wish to access many remote re-
sources; moreover, SSH denies sites control over au-
thorization, making it difficult for example to deny
access to a particular user without being invasive of
user privacy. A second disadvantage is that SSH sup-
ports only a limited set of capabilities (remote shell
and file transfer). Other applications (e.g., a collabo-
rative environment or Web browser) that require au-
thentication cannot benefit from SSH.

3 Grid Security Infrastructure

Recognizing the shortcomings of current authentica-
tion systems, we have developed the Grid Security In-
frastructure as an alternative approach to intersite se-
curity. GSI was initially developed within the Globus
research project [1] to support distributed computing
environments, or computational grids [2], which have
many features in common with virtual organizations.
In the rest of this section, we provide a brief overview
of GSI as described in [3]. As we explain in the next
section, deployment and production use in the PACI
framework have motivated a number of extensions.

GSI is concerned with interdomain operations: it
bridges the gap between the different local security
solutions at a virtual organization’s constituent sites.
The significant features of GSI (also summarized in
Figure 1) are as follows:

• Each entity (user, resource, program, etc.) is
assigned a globally unique name, or identity. We
represent identity by a certificate, which specifies
the name and additional information that can be
used to identify the entity (e.g., a public key). In
GSI, we represent certificates using the standard
X.509 format. A certification authority, or CA,
is a trusted third party that is responsible for
assigning an identity to a name.

• Each entity is also provided with a means of
proving that it possesses a specific identity. In
the basic GSI implementation, identity checking
is implemented by the authentication algorithm
defined by the SSLv3 protocol. The veracity of
the entity’s identity is only as good as the trust
placed in the CA that issued the certificate in the
first place. Thus the authentication algorithm
must validate the identity of the CA as part of
the authentication protocol.

• An entity may delegate a subset of its rights to a
third party (such as a process created by a pro-
gram) by creating a temporary identity called a

3



proxy. A proxy certificate is a certificate signed
by the user or a previous proxy for the user, thus
creating a chain of signatures terminating with
the CA that issued the initial certificate. By
checking the certificate chain, processes started
on separate sites by the same user can authen-
ticate to one another without requiring users to
send their credentials to either of the sites.

• Each resource is allowed to specify the policy
used to determine whether to accept incoming
requests. In the initial GSI, this policy was ex-
pressed by a simple access control list; other tech-
niques are used now (see Section 4).

• While the authentication protocol verifies the
global identity of the parties involved, this name
must be converted to a local subject name (e.g.,
a login name or Kerberos principal) before it can
be used by the local security system. The GSI
performs this operation by consulting a simple
text-based map file that defines the binding be-
tween a global name and a local name. This map
file is under the control of the local site.

• Access to security operations is provided by the
GSS-API [5], a standard interface for express-
ing security operations. Our implementation of
the GSS-API uses Secure Socket Layer Version 3,
(SSLv3) as implemented by the SSLeay package,
for its authentication protocols and supports the
use of proxy certificates. SSLv3 is widely used
for Web security, has been well scrutinized for
security problems, and has broad acceptance as
a mature protocol.

While relatively simple, this architecture meets all
of the user and system requirements identified above.
From the user’s perspective, the global name and use
of proxy credentials means that the user need authen-
ticate only once prior to accessing any resource; proxy
credentials and delegation also allow programs run-
ning on a user’s behalf to access resources. The use
of the X.509, SSLv3, and GSS-API standards means
that it is straightforward to develop GSI-enabled ver-
sions of both common tools and more complex appli-
cations.

From a site’s perspective, the architecture has the
advantage of not requiring any change to local secu-
rity infrastructure. Instead, the site needs to install
just relatively simple GSI-enabled servers, which use
well-known standards. Site control over policy is pro-
vided by the access control list/map file. Site admin-
istrators thus feel comfortable with the code and are
prepared to deploy it alongside SSH and other remote
access mechanisms.

4 GSI Extensions

GSI was implemented as part of the Globus toolkit
and has been successfully deployed and used at over
eighty sites. However, in moving GSI from the re-
search environment into a production system, a num-
ber of extensions to GSI had to be made to address
the operational concerns of production facilities. Of
these the most significant were support for multiple
certification authorities, interface to local Kerberos
environment, and support for smartcards.

4.1 Multiple Certification Authorities

In the initial GSI implementation, we made the sim-
plifying assumption that all user credentials were as-
sociated with a single CA operated by the Globus
project. In practice, users need to be able to present
credentials obtained from any source: their site’s CA,
a CA associated with a virtual organization such as
the PACIs, or a commercial CA. Hence, GSI must al-
low a site to deal with credentials whose authenticity
is attested to by different CAs. At the same time, a
site must retain control, as part of its access control
policy, over what CAs it is prepared to trust and what
it will trust those CAs to do.

Applications such as web browsers often provide
control over which CAs are trusted (e.g., by main-
taining a list of “trusted” CA certificates) but do not
provide control of what these CAs are trusted to do.
Yet in practice we may wish to trust only some certifi-
cates signed by a given CA. For example, a site might
trust a CA set up at a high school to sign certificates
for its students (who would then be allowed access to
educational materials), but would probably not want
to trust certificates for other users signed by that CA.

We have extended the GSI implementation to ad-
dress these issues by calling a general access control
function, specified using the Generic Authorization
and Access Control (GAA) API [6]. This function en-
ables an application to reject an authentication oper-
ation based on the subject name and the entire chain
of certificate signers, rather than simply the identity
of the issuing certificate authority. Hence, users can
present credentials obtained from any CA, and a site
can decide whether or not to accept them.

Because of the policy differences that inevitably
arise between sites regarding which CAs are accepted,
users sometimes need to supply multiple credentials
if they are to use resources at multiple sites. This
requirement raises complex issues, which we are still
investigating. To support single sign-on, users may
require different credentials at different times, which
makes delegation more complicated since multiple

4



Creation of a
User Proxy

Resource Proxy

Process

Site 1

Local policy
and

mechanisms

Site 2

User
User Proxy

Allocation of a
remote resource

Resource
allocation

from a process

Resource Proxy

Global-to-local
mapping table

Process

Local policy
and

mechanisms

Process

Process

Host computer

�CP

�CP

CRP

�CP

�CP

CRP

�
CUP

CU

Global-to-local
mapping table

��
��

Long-lived
credential

Temporary
credential

Figure 1: Schematic of the Grid Security Infrastructure, showing the basic operations supported: creation
of temporary proxy credentials; authenticated requests to remote resources (“resource proxies”); authoriza-
tion and global-to-local identity mapping; creation of remote processes, which may themselves issue further
requests; and authenticated interprocess communication (dashed lines).

5



credentials may need to be delegated. When access-
ing a particular resource, a multiply credentialed user
must determine which credential to supply: a proto-
col for determining this information is preferable to
hit-and-miss guessing. Finally, the protocol used for
mutual authentication between processes running on
a user’s behalf also needs enhancement, since the pro-
cesses might be authenticated using different creden-
tials.

As part of the PACI-wide deployment of GSI, one of
the two PACIs, the National Computational Science
Alliance, has created a CA for use by sites that do not
want to run their own. The creation of this CA has
been a significant effort in its own right, because of the
need to define a certificate policy that was acceptable
to participating institutions. This policy builds on
the model certificate policy developed by the Federal
Public Key Infrastructure project.

4.2 Obtaining Kerberos Credentials

In the simplest case, interfacing to a local security en-
vironment requires that the GSI map from the global
name to a local subject name based on an entry in a
map file. in practice, however, many computing sites
utilize an intrasite security solution based on Ker-
beros technology. Thus, we must also obtain a set
of local credentials in the form of Kerberos tickets.

To obtain such a ticket, GSI must be able to au-
thenticate to a Kerberos realm, DCE cell or AFS cell,
and it must be possible for Kerberos to issue tickets
based on GSI authentication including proxies. To fa-
cilitate this, we have developed a modified Kerberos
Key Distribution Center called SSLK5D, The ticket
returned by SSLK5D can be used like any forwarded
ticket generated by Kerberos. Control of the Ker-
beros realm or DCE cell still remains with the secu-
rity administrator, who controls the SSLK5D and its
database to map certificate names to Kerberos prin-
cipals.

SSLK5 is similar in function to the IETF’s
PK INIT draft standards and DCE RFC 68.4, but
with one distinction: we use SSL to communicate to
the SSLK5D server, rather than a specialized pro-
tocol. However, as PK INIT and RFC 68.4 become
part of the standard environment, they can replace
SSLK5.

As illustrated in Figure 2, this support for the cre-
ation of Kerberos credentials means that GSI is able
to interoperate with, rather than replace, DCE.

4.3 Alternative Credential Manage-
ment

Our GSI implementation, like many other public key
systems, maintains the user’s private key in the user’s
local file system, in encrypted form. During the sign-
on process, the user provides a pass phrase to decrypt
the private key. This approach has three disadvan-
tages. First, the private key may not be accessible
when the user travels to a remote location. Second,
a careless user may expose the pass phrase by au-
thenticating from a networked terminal. Third, an
adversary may retrieve the encrypted private key and
then subject it to a passphrase-guessing attack.

Because these issues were of concern at some GSI
sites, we have extended GSI to allow the user’s pri-
vate key to be stored on a smart card, a credit card-
sized device containing a small amount of memory
(typically 4-16 KB with today’s technology) and a
microprocessor capable of performing 1024-bit cryp-
tographic signing operations. With this technology, a
user’s private key never leaves the card: during logon,
the proxy generation code negotiates with the card to
obtain a signed proxy certificate.

5 Building the Infrastructure

Besides the augmented GSI, various elements are
needed to construct an infrastructure that meets the
requirements of Section 2.2. These include (1) a set
of GSI-enabled applications, (2) various GSI-enabled
toolkits, and (3) a certificate authority policy and
PACI certificate authority. We discuss each of these
activities as well as other issues that have arisen while
deploying this infrastructure.

5.1 GSI-based Applications

True single sign-on means that PACI users should be
able to use their GSI credentials for all PACI au-
thentication purposes as well as more sophisticated
applications such as distributed supercomputing and
collaborative data analysis. With this goal in mind,
we have developed GSI-enabled versions of a variety
of common applications, and have also verified that
our credentials can be accepted by commercial Web
browsers.

A GSI-enabled version of SSH was created by modi-
fying SSH to use GSSAPI as one of its authentication
mechanisms. This change allows users to use their
GSI credentials for authentication to a GSI-enabled
sshd daemon, including doing delegation. Since SSH
supports multiple mechanisms (e.g., Kerberos, RSA
key pair, password), it can support the GSI and still

6



User

Institution
F

Institution
D

Institution
E

Institution
A

Institution
B

Institution
C

DCE
User-to-resource

Process-to-process

Figure 2: GSI in use in an environment in which some sites (A, B, and C, and D and E) use DCE for inter-site
authentication. GSI allows a user to access resources in multiple such “DCE clouds,” while also allowing for
DCE to be used between sites when it is available.

be fully backwards compatible. The SSH modifica-
tions were also implemented by Van Dyke Technolo-
gies in their commercial SSH product, SecureCRT.
Adding this support to SSH was a relatively easy task
requiring only a couple of weeks.

Our use of GSS-API also makes development of
a GSI-enabled ftp client and server straightforward.
The Kerberos project at MIT already had a ftp mod-
ified to work with the Kerberos 5 GSSAPI library
based on RFC 2228. This code required only minor
changes in order to work with the GSI SSLeay library.
NCSA’s mass storage system also uses a ftp interface
for user access, which had already been modified to
allow authentication via Kerberos using its GSSAPI
library. Again, little effort was required to allow this
system to accept GSI credentials.

We have also verified that commercial Web
browsers can function with certificates generated for
GSI use. This work required no actual changes to the
browsers themselves, just experimentation to deter-
mine the proper procedures for formatting and im-
porting the certificates into the browsers.

5.2 GSI-based Toolkits

While the set of GSI-enabled applications just de-
scribed provide a good basis for remote resource ac-
cess, members of a virtual organization such as the
PACIs also want security to be incorporated into a
wide variety of other applications. Hence, we have
developed various tools that facilitate the incorpora-
tion of GSI mechanisms into applications.

One such tool is gss assist, a set of convenience
functions for accessing GSS functions. GSS-API is
rich and robust but is also complex. Many appli-
cations require only a subset of GSS-API features;
gss assist shields the developers of these applica-
tions from unneeded complexity, by providing a sim-
pler API that still implements the full security of
GSI. Many gss assist functions are simple wrappers
around their GSSAPI counterparts, with appropriate
default values. Some are more complicated, such as
the wrappers around the security context initializa-
tion and acceptance functions that perform the full
looping and network communication needed for GSS-
API authentication and context establishment.

Another useful GSI-based application toolkit is
Globus, a set of services for constructing distributed
applications. Globus mechanisms have been extended

7



to use GSI functionality; hence, any application that
uses Globus mechanisms gets security essentially for
free. For example, a version of the popular Mes-
sage Passing Interface, MPICH-G, uses Globus mech-
anisms for initiating remote computation and hence
does not need to do anything special to address au-
thentication and authorization issues when running
across multiple sites.

6 Conclusions

We have described our experiences developing and de-
ploying the Grid Security Infrastructure for a large
virtual organization, namely, the NSF Partnerships
for Advanced Computational Infrastructure. GSI ca-
pabilities include single sign-on capability, standards-
based APIs and applications, and delegation mecha-
nisms, all without requiring changes to the security
mechanisms or policies at a particular site. The Grid
Security Infrastructure is being used to support re-
mote access to supercomputers, data archives, and
other resources at dozens of sites across the United
States.

Acknowledgments

This work was supported in part by the Mathemat-
ical, Information, and Computational Sciences Divi-
sion subprogram of the Office of Advanced Scientific
Computing Research, U.S. Department of Energy,
under Contract W-31-109-Eng-38; by the Defense
Advanced Research Projects Agency under contract
N66001-96-C-8523; by the National Science Founda-
tion; and by the NASA Information Power Grid pro-
gram.

References

[1] I. Foster and C. Kesselman. Globus: A toolkit-
based grid architecture. In [2], pages 259–278.

[2] I. Foster and C. Kesselman, editors. The Grid:
Blueprint for a Future Computing Infrastructure.
Morgan Kaufmann Publishers, 1999.

[3] I. Foster, C. Kesselman, G. Tsudik, and S. Tuecke.
A security architecture for computational grids.
In ACM Conference on Computers and Security,
pages 83–91. ACM Press, 1998.

[4] W. Johnston and C. Larsen. A use-condition cen-
tered approach to authenticated global capabil-
ities: Security architectures for large-scale dis-

tributed collaboratory environments. Technical
Report 3885, LBNL, 1996.

[5] J. Linn. Generic security service application pro-
gram interface. Internet RFC 1508, 1993.

[6] Tatyana Ryutov and Clifford Neuman. Access
control framework for distributed applications. In-
ternet Draft, Internet Engineering Task Force,
November 1998.

[7] J. Steiner, B. C. Neuman, and J. Schiller. Ker-
beros: An authentication system for open network
systems. In Usenix Conference Proceedings, pages
191–202. 1988.

8


